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ABSTRACT: In polymer industry, engineers seek to
obtain polymers with prescribed end-use properties, high
productivities, and low cost. Thus, the optimization of a
manufacturing process with all those goals and constraints
belongs to a problem domain that aims to achieve the best
trade-off possible. This article concerns the optimization
of the batch emulsion polymerization of styrene and a-
methylstyrene. An accurate model was developed to
describe the complete patterns of the emulsion polymeri-
zation. Key parameters of the model were identified on
the basis of batch experimental data. The model was then
used to simulate, under several operating conditions, the

polymerization rate, the overall conversion of monomers,
and the number and weight-average molecular weights.
A multicriteria optimization approach based on an evolu-
tionary algorithm and the concept of dominance from the
Pareto frontier theory was used. Last, a decision aid
system based on the Choquet integral was proposed to
determine the optimal operating conditions with the pre-
ferences of the decision maker taken into account. VC 2011
Wiley Periodicals, Inc. J Appl Polym Sci 120: 3421–3434, 2011
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INTRODUCTION

Many optimization problems are often multiobjective
decision problems. For example, one may have to
simultaneously optimize the polymer production, the
cost of the process, and the product quality. Under
the given operating conditions, it is likely that not all
of these objectives are optimal. Multiple objectives
are normally related to each other through a linear or
empirical combination to form a scalar objective
function2 or an empirical buildup.3 Another method
consists of optimizing a criterion while imposing
constraints on all of the other ones.4 These methods
and others depend on the a priori decision maker’s
preferences. Decisions thus made could be biased
because the decision maker may not have a complete
view of the overall compromises.

Multicriteria optimization, in the Pareto’s sense, is
defined as the set of efficient solutions correspond-

ing to those nondominated solutions in the z-dimen-
sional objective space, called the Pareto front. Follow-
ing the concept of Pareto dominance, a solution x is
dominated by another one y for a set of criteria if, x
is worse or equal than y for all the criteria, and
strictly worse for, at least, one criterion.5 Recently,
several scientific studies have applied Pareto multi-
criteria optimization to polymerization processes6–10

and other industrial applications.11,12 In chemical
engineering, only few researchers have used deci-
sion engineering tools to seek a particular solution,
taking into account the preferences of the deci-
sion.13–20 In this article, we address this issue, parti-
cularly in the field of polymer reaction engineering.
In our previous article,16 an original two-step

methodology was developed. This method allows
one to combine both optimization and decision aid.
The first step consists of taking into account the
whole set of criteria, without a priori, to achieve a set
of potential solutions by multicriteria optimization
with an evolutionary algorithm. As a result, the
resulting set of compromises could provide new
knowledge, which would help the decision maker to
adjust her or his preferences. In a second step,
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recommendations are made to the decision maker,
from the ranking of compromises obtained thanks to a
tool using the adjusted decision maker’s preferences.

Most early studies in this field dealt with narrow
Pareto domains (space of operating conditions).7 In
those cases, the choice of the best solution could be
relatively simple. The wider the Pareto domain is,
the more difficult the definition of the best solution
can be. Then, there is a need to use multicriteria
decision aid (MCDA) tools. An MCDA tool gives a
graphical representation of the set of Pareto’s
optimal solutions and the relationship between the
criteria performances, the operating conditions, and
a solution’s ranking. This results in a complete
vision of the problem for the decision maker. This
article is placed in this context.

In practice, many decision makers consider the set
of criteria as independent of each other. For others,
the criteria may interact with each other. These
interactions could be modeled by the Choquet
integral, a decision-making tool not yet used in
chemical engineering. This is the third original con-
tribution of this work.

The Choquet integral is based on the theory of
fuzzy measures.21 The use of the fuzzy measures in
a multicriteria decision-making allows the modeling
of interactions among criteria.22 For example, when
two criteria are positively (or negatively) correlated,
the importance of the two combined should be less
(or more) than the sum of the importance of each of
them. Many authors have proposed the use of the
Choquet integral to decision support systems in
several industrial applications.23,24 It is claimed to be
an adequate substitute of the weighted average. We
prefer this multicriteria technique for two main
reasons: fuzzy measures take into account the crite-
ria relevance (the decision maker’s preferences) and
interactions among them.

The objective of this article was to improve the
two-step methodology through the introduction of
the Choquet integral as a decision aid tool. As illus-
trated in subsequent sections, this approach was
applied to the emulsion copolymerization of styrene
(STY) and a-methylstyrene (AMS). Emulsion poly-
merization processes are common for latex produc-
tion, particularly for paints, varnishes, inks, and
adhesives. For these applications, the final product
is characterized by the end-use properties, such as
wet scrub resistance and filmification. These end-use
properties are functions of properties such as the
glass-transition temperature, molecular weight distri-
bution and initial weight fraction of AMS (wAMS) in
the copolymer (F1), and conversion (Volatile Organic
Compound, VOC rate). The optimization of a set of
properties is a multicriteria problem. In fact, the tar-
get goals to be reached can often be conflicting. As a

result, the optimum set of properties cannot be
achieved simultaneously.

EXPERIMENTAL

The experimental methods and tools that we used
for the emulsion copolymerization of STY and AMS
followed those used for the emulsion polymerization
of STY.16 The two monomers were first emulsified in
water in the form of droplets by a surfactant agent
(a mixture of Genapol and Texapon) under stirring.
Potassium persulfate (KPS), a water-soluble initiator,
was also added to the emulsion when the reaction
medium was at the reaction temperature. The
copolymerization was carried out in a 1-L glass reac-
tor. During the polymerization, the reactor was
closed, agitated, and thermostated. Latex samples
were taken from the reactor at chosen time intervals.
They were analyzed by

• Gravimetric analysis to determine the overall
conversion of the monomers.

• Gas chromatography to evaluate the residual
monomer content and, consequently, the com-
position of the formed copolymer.

• Gel permeation chromatography coupled with a
differential refractometer and a multiangle laser
light-scattering device to obtain the molecular
weight distribution and the number-average
molecular weight (Mn) and weight-average mo-
lecular weight (Mw) of the copolymer.

• Quasi-elastic light scattering to determine the la-
tex average particle diameter (dP) values.

PROCESS MODELING

Assumptions

The main assumptions made for the model were as
follows:

• The diameters of the monomer droplets and
those of the growing particles were
monodisperse.

• Because of the relatively high hydrophobicity of
the monomers, propagation, chain transfer to
the monomer, and termination reactions in the
aqueous phase were negligible.

• Transfer to polymer reactions was not taken
into account.

• Coagulation between particles was negligible.
• The reactor was assumed to be isothermal and
ideally mixed. It is well-known that the reactor
is not isothermal at industrial scale.25 Neverthe-
less, it was verified that under the polymeriza-
tion conditions used in this study, the reactor
was isothermal.
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Emulsion polymerization is a complex process,
and its mechanism is well-known.26 In this study,
instead of a single big complex model, several small
models were developed. Each model was aimed at
describing/predicting a specific characteristic of the
state process. For that purpose, all of the statistic
distributions were assumed to be independent.
Theoretically, this assumption may not be valid.
However, it largely simplified the problem without
a loss of the predictability or the accuracy of the
model. The previous assumptions led to the model
described in Table II in ref. 15.

Reaction rates

Initiator decomposition

The rate of decomposition of the initiator in the
aqueous phase is given by eq. (1):16

kD Tð Þ ¼ kD0 323:15 Kð Þ exp �Ead

R

1

T
� 1

323:15

� �� �
(1)

where kD is the thermal decomposition constant of
the initiator in the aqueous phase, kD0 (323.15 K) is
the thermal decomposition constant of the initiator
in the aqueous phase at 323.15�K, T is the polymer-
ization temperature, Ead is the activation energy,
and R is the universal gas constant.

The free-radical efficiency in the aqueous phase (f)
varied with the molar fraction of AMS in the mono-
mer feed27 (f1) as follows:

f ¼ f0 expð�bf1Þ (2)

where f0 is the free-radical efficiency in the pure STY
system and b is the initiator efficiency parameter.

Nucleation

The nucleation and surfactant partition were
described in part I of this series.16 The nucleation
rate due to the presence of AMS is noted as Rcm.
Because of the presence of AMS, the nucleation
constant (kcm) was calculated by

kcm ¼
X2
i¼1

kcmif0i (3)

where f0i is the initial molar fraction of monomer i
in the reactor.

Rate of entry of radicals into particles

The capture rate of free radicals by particles (Rcp)
depends on a kinetic parameter, as presented in part
I of this series.16

Desorption

In part I, the desorption rate of free radicals was
neglected. The results presented in ref. 28 show that
the desorption rate of radicals that ended with an
STY unit was 72 times lower than those of radicals
that ended with an AMS unit. So, in this study, the
desorption rate of free radicals terminated with an
STY unit (R2

0s) was neglected, whereas that termi-
nated with an AMS moiety was taken in to account
and was given by

RDS ¼ ddes1
d2p

NP�n

NA
P1 (4)

where RDS is the desorption rate of free radicals
from particles, NP is the number of particles, n is
the average number of free radicals per particle,
NA is Avogadro’s number (the number of mole-
cules or particles in 1000 mol), and P1 is the frac-
tion of free radicals terminated with an AMS unit
(R1

0s) with regard to the total free radicals in the
particle.
ddes1 is the desorption constant of R1’s and

depends on

• Their diffusion coefficient in the aqueous phase.
• Their partition coefficient between the aqueous
phase and the particles.29

• The fraction of desorbed free radicals.
This depends on the monomer chain-transfer
coefficient.30

• Their diffusion coefficient in the particles.31

The rate of desorbed free radicals entering the
aqueous phase is fRDS.

28 The factor f has the same
value as that in eq. (2), as shown by the parametric
identification in refs. 2 and 32.

Propagation

The rate of polymerization of monomer j with
free radicals terminated with monomer i (RPij) is
given by

RPij ¼ kPij Mj

� �
P

NP�nPi

NA
(5)

where kPij is the propagation rate constant, [Mj]P
is the molar concentration of monomer j in the
particles, and Pi is the fraction of free radicals termi-
nated with monomer i.
The temperature dependency of kPij can be written

as follows:

kPij Tð Þ¼kPij0 323:15 Kð Þ exp �Eapij

R

1

T
� 1

323:15

8>: 9>;� �
ð6Þ
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where Eapij is the activation energy, and kpij0
(323.15 K) is the propagation rate constant at
323.15�K. In the case of a propagation reaction
with a primary radical (R0) resulting from a cap-
ture process, one has

kP0j¼
X2
i¼1

f0ikPij (7)

This is due to the fact that this reaction has a real
effect, as observed during the simulations, only at the
beginning of the polymerization process. For the entire
polymerization time, the sensitivity of the simulation
results on this parameter’s value was weak [eq. (7)].

The homopolymerization of AMS is very difficult
because of its low reactivity and low ceiling tempe-
rature (61�C).28,33 In this study, we assumed that the
homopolymerization of AMS did not occur:

kP11 ¼ 0 (8)

Thus, the overall propagation rate (RP) was

RP ¼ RP01 þ RP21 þ
X2
i¼0

RPi2 (9)

where STY and AMS are designated as 2 and 1,
respectively.

Termination

As in article I, the termination reactions were assumed
to be instantaneous. This assumption corresponded to
the classical zero–one conditions model.34 Concomi-
tantly, the gel and glass effects were neglected.

Glass effect

The glass effect equation used for the propagation
was the one proposed in the literature.30 kPij is
related to the weight fraction of the polymer in the
particles (wP):

kPij ¼ kPij0 if wP � 0:8
kPij ¼ kPij0 expð�aðwP � 0:8ÞÞ if wP > 0:8

�
(10)

where a is an adjustable parameter and is assumed
to be the same for propagation constants, and kP0ij is
the value of kPij(T) calculated by equation 6.

Transfer to monomer

The transfer rate of monomer j with free radicals ter-
minated with monomer i (RTRij) is

RTRij ¼ kTRij Mj

� �
P

NP�nPi

NA
(11)

where [Mj]P is the molar concentration of monomer
j in the particles. The temperature dependency of
the transfer rate constant of the monomer (kTRij)
follows:

kTRijðTÞ ¼ kTRij0ð323:15 KÞ: exp �Eatrij

R

1

T
� 1

323:15

� �� �
(12)

where Eatrij is the activation energy, and kTRij0
(323.15 K) is the transfer rate constant of the mono-
mer at 232.15�K. In the case of a transfer reaction of
the monomer to R0 resulting from the capture pro-
cess, one has

kTR0j ¼
X2
i¼1

f0ikTRij (13)

Then, the overall transfer rate (RTR) can be defined as

RTR ¼
X2
i¼0

X2
j¼1

RTRij (14)

Volume of each phase and the monomer partition

Calculation of volumes

The engaged volume of the polymerizing system in
the reactor (VR) is given by

VR ¼ VR0 þ VAQ

X2
i¼1

M0iXiMi
1

qPi
� 1

qi

� �
(15)

where VR0 is the initial volume of the polymerizing
system in the reactor, VAQ is the volume of the
aqueous phase (constant), M0i is the initial concen-
tration of monomer i (mol/aqueous phase volume),
Xi is the total mass conversion of monomer i, Mi is
the molecular weight of monomer i, qPi is the den-
sity of monomer i in the polymer, and qi is the den-
sity of monomer i. The volume of the polymer
(VPOL) is

VPOL ¼ VAQ

X2
i¼1

M0iXi
Mi

qPi
(16)

The volume of the particles (VP) and the volume of
the droplets (VD) are given by

if VR > VAQ þ VPOL

1�/

then VP ¼ VPOL

1�/ and VD ¼ VR � VAQ � VP

else VD ¼ 0 and VP ¼ VR � VAQ

8>><
>>: (17)
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where / is the volume fraction of monomers in the
particles. dP is given by

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6VP

p NPVAQ

3

s
(18)

Mass and molecular fractions and concentrations

f0i (in all monomers) is

f0i ¼ M0iP2
j¼1

M0j

(19)

where M0j is the initial concentration of monomer j.
The molar fraction of monomer i (fi) is

fi ¼ M0ið1� XiÞP2
j¼1

M0jð1� XjÞ
(20)

where Xj is the total mass conversion of monomer j.
The partition of the monomers in droplets and

particles yields the following [Mi]P:

½Mi�P ¼
fi 1� VPOL

VP

	 

P2
j¼1

fj
Mj

qj

(21)

where Mj is the molecular weight of monomer j and
qj is the density of monomer j.

wP is given by

wp

1� wp
¼

VAQ

P2
i¼1

M0iXiMi

VP

P2
i¼1

½Mi�PMi

(22)

F1 is

F1 ¼ M01X1

X
P2
i¼1

M0i

(23)

where X is the overall conversion.

Balances

The balances of the initiator, free radicals, and NP in
the aqueous phase were the same as those presented
in article I.

The balance of free radicals is

dRw

dt
¼ 2 fRD � Rcp � Rcm þ fRDS (24)

where Rw is the free radical concentration in the
aqueous phase, and RDS is an output rate for
the particle phase. The input rate of radicals for the
aqueous phase is fRDS. f is the same factor as that
corresponding to initiation because the phenomenon
is the same.28,32 It corresponds to the probability of
the existence of radicals in the aqueous phase.

Balances of the monomers

The balance for AMS was as follows:

M01
dX1

dt
¼ RP01 þ RP21 þ RTR01 þ RTR11 þ RTR21 (25)

The balance for STY was as follows:

M02
dX2

dt
¼

X2
i¼0

RPi2 þ
X2
i¼0

RTRi2 (26)

The balance of the total monomer was as follows:

dX

dt

X2
i¼1

M0i ¼ RP þ RTR (27)

Balances of the free radicals

There were three types of free radicals in the
particles: R0’s (fraction P0), R1’s (fraction P1), and
R2’s (fraction P2).
The balance in R1’s was as follows:

d NPnP1

NA

	 

dt

¼ RP01 þ RP21 � RP12 þ RTR01 þ RTR21

�RTR12 � RcpnP1 � RDS ð28Þ

The balance for R2’s was as follows:

d NPnP2

NA

	 

dt

¼ RP02 þ RP12 � RP21 þ RTR02 þ RTR12

�RTR21 � RcpnP2 ð29Þ

with
P2

i¼0 Pi ¼ 1.
The total balance for free radicals was as follows:

d NPn
NA

	 

dt

¼ Rcm þ Rcpð1� 2nÞ � RDS (30)

Polymerization degree of the free radicals

The determination of the distribution moments was
inspired by Villermaux,35 who developed a method
for modeling free-radical homogeneous polymerization
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reactions. This method of moments was adapted
here to determine the moments of the molecular
weight distribution in the emulsion polymerization.

In the case of the macroradicals, the number of
active chains corresponded to NPn. k1 and k2 denote
the average numbers of AMS and STY moieties in
those macroradicals, respectively. The balance for k1
is given by

d NPnk1
NA

	 

dt

¼
X2
j¼0

RTRj1 þ RP01 þ RP21 � ðRTR þ RcpnÞk1

�RDS ð31Þ

The balance for k2 is given by

d NPnk2
NA

	 

dt

¼
X2
j¼0

RTRj2 þ
X2
j¼0

RPj2 � ðRTR þ RcpnÞk2

�RDS2 ð32Þ

Molecular weight distribution

The number of polymer chains (Nc) is the sum of
number of active chains and the number of dead
polymer molecules. The balance of chains is

d Nc

NA

	 

dt

¼ Rcm þ RTR þ Rcp 1� nð Þ � RDS (33)

k1 and k2 denote the average numbers of AMS and
STY moieties in all the polymer chains. The balance
of k1 is given by

d Nck1
NA

	 

dt

¼
X2
j¼0

RTRj1 þ RP01 þ RP21 � RDS (34)

The balance of k2 is given by

d Nck2
NA

	 

dt

¼
X2
j¼0

RTRj2 þ
X2
j¼0

RPj2 (35)

Mn is calculated by

Mn ¼
X2
i¼1

Miki (36)

To calculate Mw, it is necessary to determine several
second moments of the degree of polymerization. l1,
l2, and l are the second moments of the number of
AMS moieties, STY moieties, and the sum of both in
the polymer chains, respectively. The corresponding
balances are

d Ncl1
NA

	 

dt

¼
X2
j¼0

RTRj1þRP01þRP21 1þ2k1
� �� RDS1 (37)

d Ncl2
NA

8: 9;
dt

¼
X2
j¼0

RTRj2 þ RP01 þ 1þ 2k2
� �X2

j¼1

RPj2

�RDS2 ð38Þ
d Ncl

NA

8: 9;
dt

¼ RTR þ
X2
j¼0

RP0j þ RP21 þ
X2
j¼1

RPj2

0
@

1
A

� 1þ 2 k1 þ k2
� �� �� RDS ð39Þ

The variances of the numbers of AMS and STY
moieties in the chains were l1 � k21 and l2 � k22,
respectively. The covariance of the moments for the
number of monomer moieties is given by m � k1k2
with

l ¼ l1 þ l2 þ 2t (40)

Mw is given by

MnMw ¼ M2
1l1 þM2

2l2 þ 2M1M2t (41)

The combination of eqs. (40) and (41) leads to

M2 ¼ M1M2lþ M1 �M2ð Þ M1l1 �M2l2ð Þ
Mn

(42)

ESTIMATION OF THE MODEL PARAMETERS

Data for parametric identification

The goal of this model was to predict the monomer
conversions, Mn, Mw, NP per unit of volume of the
aqueous phase, dP values, and concentrations as a
function of time for different process operating
conditions, such as temperature, surfactant, initial
concentration of the initiator ([A]0), and initial
concentrations of the monomers ([M]0’s).

TABLE I
Selected Characteristics of the Monomers

Description STY AMS

Supplier Aldrich
(Lyon, France)

Fluka
(Lyon, France)

Molecular weight (g/mol) 104.15 118.18
Density at 20�C (g/L) 906 908
Density of the
homopolymer (g/L)

1070 1150
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Table I shows selected characteristics of the mono-
mers.36 The value of the density of poly(a-methyl-
styrene) corresponded to an estimated property of
an AMS moiety in a polymer chain.

The copolymerization of AMS and STY was different
from the homopolymerization of STY reported in part I
of this series.16 Moreover, the surfactant was not sodium
dodecyl sulfate but a mixture of Texapon and Genapol.
Nevertheless, the parameters of the homopolymeriza-
tion in part I16 were used for the copolymerization.

The energies of activation for the persulfate
decomposition, propagation, and monomer transfer
were 135, 32.5, and 55.9 kcal/mol, respectively.27

The other parameters were temperature dependent,
but their variations were considered to be negligible.

Polymerization experiments without AMS (the
homopolymerization of STY) were carried out at
50, 65, and 85�C, respectively. The total [M]0 was
2.184 mol/L. The total number of measurements
was 61 for X, 46 for NP per liter, and 17 for both Mn

and Mw. No significant differences between the sim-
ulations and experimental data were found.

Identification of the kinetic parameters of the
copolymerization was carried out with the model
and values of the homopolymerization of STY
described previously and those given in the litera-
ture.34 Values for the critical concentration of the sur-
factant (Scmc) and / were the same as those for the
homopolymerization of STY and were also used for
the copolymerization of STY and AMS (Table II).
Experiments were carried out in a 1-L closed reactor
with water, KPS, STY, AMS, and a surfactant mixture
composed of Texapon (T) and Genapol (D). The ini-
tial concentrations of these materials were as follows:

½KPS�0 ¼ 1 g=L ¼ 3:7� 10�3 mol=L (43)

½G�0 þ ½T�0 ¼ 3Scmc ¼ 6:648 g=L (44)

½G�0=½T�0 ¼ 2 (45)

Table III shows information on the copolymerization
experiment. The total number of measurements were
261 for X, 221 for NP per liter, 70 for both Mn and
Mw, and 68 for F1 [eq. (32)].

STY copolymerization

The parameters were determined by optimization of
the maximum likelihood criteria37 from the experi-

mental data. Identification of b allowed us to reduce
the initiator efficiency as a function of the residual
concentration of AMS. The presence of the AMS
reduced the initiator efficiency to a level of about
0.01. The gap between the experimental measure-
ments and the model was higher than 100% at the
beginning of the polymerization process. This last
finding confirmed the theory27 that the initiator effi-
ciency depends on the nature of the monomers.
Identification of the propagation constants allowed

us to determine the reactivity ratio (r12). At 50�C, it
was 1.1; this matched those of the literature, which
range from 0.9 to 1.3.38 The second r12 could not be
calculated because, under the specified copolymeri-
zation conditions, the depropagation rate of AMS
was very high compared with the propagation rate.
The values reported in the literature are generally
lower than 0.6;38 this implied that the propagation
constant of AMS (kP011) would be very small. The
activation energies for the propagation constant
allowed us to calculate the r12 values at different
temperatures: r12 ¼ 1.2 at 65�C and r12 ¼ 1.3 at 85�C.
The nucleation constant of AMS was higher than

that of STY; this proved that NP depended on the
concentration of AMS in the system. In fact, the dP
values decreased with increasing initial concentra-
tion of AMS.
R1’s tend to desorb out of the particle.39 n becomes

lower than 0.5. Thus, the copolymerization of STY
and AMS was different from the homopolymeriza-
tion of STY (Table IV).
As mentioned in a previous section, four experi-

ments were carried out at 50, 65, and 85�C. Fifteen
figures were needed to show the conversion, particle
number, Mn, Mw, and F1. To reduce this number, we
chose to show all of the variable evolutions at 50�C.
One figure at 85�C completes these presented results.
Figure 1 shows the effect of the temperature on

the evolution of the experimental and simulated

TABLE II
Values of Properties from the Literature

Temperature (�C) Scmc (g/L)
41 /42

50 2.0
65 2.2 0.6
85 2.3

TABLE III
Copolymerization Experiments

Temperature
(�C)

Total initial
monomer

concentration (mol/L) wAMS

50 2.159 0.089
50 2.120 0.227
50 2.094 0.322
50 2.055 0.468
65 2.159 0.089
65 2.120 0.227
65 2.094 0.322
65 2.055 0.468
85 2.159 0.089
85 2.120 0.227
85 2.094 0.322
85 2.055 0.468
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conversions as a function of time in the case of the
STY copolymerization with wAMS ¼ 0.1. As expected,
an increase in the temperature led an increase in the
polymerization rate. This effect existed also for the
other wAMS’s used (0.25, 0.35, and 0.5). Furthermore,
the polymerization rate decreased with increasing
wAMS; this confirmed the low reactivity of AMS and
its high tendency toward depropagation. Not all
results used for modeling are presented here to limit
the number of figures.

Figure 2 shows the experimental and simulated
numbers of particles at 65�C during time for the
different wAMS’s. At each temperature, for times
above 10,000 s, the experimental NP increased with
wAMS until wAMS [ [0.25, 0.35] and then decreased as

wAMS increased. Under these conditions, the experi-
mental NP varied between 2.23 � 1017 and 3.68 �
1017 at 50�C, 4.37 � 1017 and 5.03 � 1017 at 65�C,
and 6.38 � 1017 and 11.4 � 1017 at 85�C. However,
the measurement error was nonnegligible. We do
not have an explanation at this time for this
phenomenon.
The model behavior is then even more compli-

cated. At 50�C, for times up to 10,000 s, the simu-
lated NP decreased with increasing wAMS. At 85�C, it
increased continuously with increasing wAMS. At
65�C (Fig. 2), the simulated NP decreased with
increasing wAMS from 0.10 to 0.25 and increased
with wAMS from 0.25 to 0.50. The simulated NP

varied from 2.48 � 1017 to 3.97 � 1017 at 50�C, from
4.69 � 1017 to 5.11 � 1017 at 65�C, and from 7.22 �
1017 to 9.57 � 1017 at 85�C. For these three different

TABLE IV
Optimal Values of the Parameters for the Copolymerization Model

Parameter Meaning Value

A Glass effect coefficient 6.3
b Initiator efficiency parameter 7.4

kP120 Propagation constant AMS/STY at 50�C 41 L mol�1 s�1

kP210 Propagation constant STY/AMS at 50�C 273 L mol�1 s�1

kTR110 Monomer transfer constant AMS/AMS at 50�C 1.51 � 10�2 L mol�1 s�1

kTR120 Monomer transfer constant AMS/STY at 50�C 4.1 � 10�3 L mol�1 s�1

kP210 Monomer transfer constant STY/AMS at 50�C 2.09 � 10�2 L mol�1 s�1

kcm1 Nucleation constant of AMS 1.03 � 10�2 L g�1 s�1

ddes1 Desorption constant of R1’s 3.0 � 10�16 dm2/s
Eap12 Propagation activation energy of AMS/STY 15,500 J/mol
Eap21 Propagation activation energy of STY/AMS 28,700 J/mol
Eatr11 Transfer activation energy of AMS/AMS 65,900 J/mol
Eatr12 Transfer activation energy of AMS/STY 117,700 J/mol
Eatr21 Transfer activation energy of STY/AMS 69,100 J/mol

Figure 1 Effects of the temperature and wAMS on the evo-
lution of the experimental and simulated conversions over
time: T ¼ 50�C: wAMS ¼ (^) 0.1 and (~) 0.25, (l) 0.35, (n)
0.50; (^) T ¼ 65�C and wAMS ¼ 0.1; and (^) T ¼ 80 and
wAMS ¼ 0.1

Figure 2 Comparison of the experimental and simulated
NP values at 65�C for different wAMS’s: [(^) experimental
and (----) simulated] 0.1, (~ and —) 0.25, (l and . . .) 0.35,
and (l and - - -) 0.50.
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temperatures, the evolution of NP did not follow the
same trend. Nevertheless, for each temperature, the
ranges of variation were the same for the experi-
ments and the simulations. On the other hand, the
simulated and experimental NP values increased
with increasing temperature, whatever wAMS was.
As shown in Figure 2, at 65�C, both ranges of varia-
tion were narrow. The differences between the

experimental and simulated data were within
experimental error and the limits of the model and
were small enough for the modeling purposes.
Figure 3 compares the experimental and simulated

Mn values of the copolymer for different wAMS’s at
50�C. The agreement was good. However, it was
much worse when T was 65 or 85�C. This was
related to the low ceiling temperature for the homo-
polymerization of AMS (61�C). The molecular mass

Figure 3 Comparison of the experimental and simulated
Mn’s at 50�C for different wAMS

0s: [(^) experimental and
(----) simulated] 0.1, (~ and —) 0.25, (l and . . .) 0.35, and
(l and - - -) 0.50.

Figure 4 Comparison of the experimental and simulated
Mw’s at 50�C for different wAMS

0s: [(^) experimental and
(----) simulated] 0.1, (~ and —) 0.25, (l and . . .) 0.35, and
(l and - - -) 0.50.

Figure 5 Comparison of the experimental and simulated
F1 values at 50�C and with different wAMS

0s: [(^) experi-
mental and (----) simulated] 0.1, (~ and —) 0.25, (l and
. . .) 0.35, and (l and - - -) 0.50.

Figure 6 Comparison of the experimental and simulated
Mw’s at 85�C for different wAMS

0s: [(^) experimental and
(----) simulated] 0.1, (~ and —) 0.25, (l and . . .) 0.35, and
(l and - - -) 0.50.
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distribution was measured with STY homopolymer
standards. Figure 4 compares the experimental and
simulated Mn and Mw values at 50�C. Again the
agreement was satisfactory. Similar results were
obtained for the copolymerizations at 65 and 85�C.
The experimental and simulated compositions of
AMS in the copolymer were very close, whatever
the copolymerization temperature was (50, 65, or
85�C). This is shown in Figures 5 and 6.

MULTICRITERIA OPTIMIZATION OF THE
EMULSION COPOLYMERIZATION

Multicriteria optimization by an evolutionary
algorithm

As indicated in the first section, the goal of this study
was to determine a set of compromises correspond-
ing to the Pareto optimal solutions (nondominated
solutions). This is done by minimizing the number of
times in which one solution is dominated by

another.40 Evolutionary algorithms are well adapted
to multiobjective problems when an industrial
process optimization is needed.41,42 The one used to
converge into the set of elements that best fit the cri-
teria is predefined thanks to the dominance principle
as described by Halsall-Whitney and Thibault.43

Problem statement and Pareto front approach

The copolymerization model explained previously
allowed us to predict, after a given final time tf, X,
NP, Mw, Mn, and F1. The initial operating conditions
considered were [A]0, [M]0, the initial concentration
of the surfactant ([S]0), T, and wAMS. In this study,
only T and wAMS were varied. The first set of criteria
to be optimized was defined with respect to the out-
put parameters of the copolymerization model.
The goal was to optimize the quality of the

obtained latex in terms of the monomer conversion,
Mw, and wAMS. In other words, the monomer con-
version [eq. (46)] was to be maximized:

f1 ¼ Xðtf Þ (46)

where f1 is objective function 1 (monomer conver-
sion). The difference between the predicted Mw and
the target weight-average molecular weight [Mwd;
eq. (47)] was minimized:

f2 ¼ jMwðtf Þ �Mwdj (47)

where f2 is objective function 2 (quality in terms of
average molecular weight):

Mwd ¼ 3� 106 g=mol (48)

wAMS incorporated in the copolymer was maximized
so that the hardness of the copolymer would be the
highest [eq. (49)]:

f3 ¼ F1ðtf Þ (49)

where f3 is objective function 3 (AMS fraction incor-
porated in the copolymer). NP was not optimized in
this study because the model was believed to be
unable to predict it accurately. The next step was
then to simultaneously optimize the three criteria (f1,
f2, and f3) with respect to two variables (T and
wAMS) under the following conditions:

50:15 � T � 85:15
�
C (50)

0 � wAMS � 1 (51)

½A�0 ¼ 3:7� 10�3mol=L (52)

½M�0 ¼ 2:184 mol=L (53)

Figure 7 (a) Pareto zone and (b) Pareto front for the
emulsion copolymerization of STY and AMS.
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S0 ¼ 3Scmc (54)

tf ¼ 21; 600 s (55)

The multicriteria optimization approach and the
model developed in this study were then applied to
the emulsion copolymerization of STY and AMS
described previously. Figure 7(a) shows the Pareto
zone (space of variables). As shown, almost the
entire space was feasible. Figure 7(b) shows the
Pareto front (space of criteria) that visualized
the response surface of this phenomenon in a three-
dimensional space. Obviously, it was difficult to
simultaneously maximize f1 and f3 and minimize f2.

Each point of the Pareto front corresponds to one
point of the Pareto zone. Thus, one can choose one
point of the Pareto front corresponding to her or his
preferred product characteristics and then determine
the corresponding operating conditions in the Pareto
zone. However, making a choice is not easy and
generally needs a decision support system.

The Pareto zone was too broad for this emulsion
copolymerization system. In such a case, the use of a
decision support system will help one choose the
optimal operating conditions. An MCDA is a prefe-
rence model capable of reproducing decision-maker
preferences. It provides recommendations about the
solutions in the Pareto front and their corresponding
operating conditions.

Decision aid shell based on the Choquet integral

As mentioned,44 the multicriteria model is composed
of three main components:

• Formalism of criteria. This is implemented
thanks to the utility functions and allows the
establishment of the index measure between the
criteria.

• Fuzzy measure. This is a set function that is set
up to model the importance of the interactions
between criteria.

• Choquet integral. This allows overall evaluation
on calculation of an average value of the utilities
with the importance of interactions between the
criteria taken into account.

The Choquet integral was introduced by Choquet21

on the basis of the theory of fuzzy measures. In

comparison with other multicriteria analysis techni-
ques, the Choquet integral has the following two
characteristics:

• It extends the weighted approach of other tech-
niques to a fuzzy set of criteria by taking into
account interactions between them.

• It allows an expression of the degree of importance
of a combination of criteria in a unique index.

The use of the fuzzy measures in a multicriteria
decision-making enables the modeling of interactions
among criteria.23 For example, when two criteria are
positively correlated, the importance of these criteria
taken together should be strictly less (or more) than
the sum of the importance of each of the single
criteria.
The approach of aggregating scores to calculate an

overall score is the basis of the multiattribute theory
because scores on criteria are nothing other than
utility values of attributes.44 The aim of the multi-
attribute utility approach is to assign an overall
score to each vector of scores when one takes into
account the different criteria describing the preferen-
ces of the decision maker when considering several
criteria simultaneously. The mechanism of the deci-
sion maker could be described by two components.44

The intracriteria preference describes to the degree to
which the values of a given attribute are satisfactory
for the decision maker. In our case, this preference
was indicated by the decision maker itself. The inter-
criteria performance describes to the degree to which
coalitions and interactions of the criteria are impor-
tant for the decision.
A fuzzy measure (l) is defined under X. As an

application, l: P(X) ! [0,1], which satisfies

lðXÞ ¼ 1 (56)

lð/Þ ¼ 0 (57)

where P(X) is a set included in X, and (monotonic-
ity)

S � T � X ) lðSÞ � lðTÞ (58)

where S and T are sets included in X. Finally, the
aggregation function allows the overall evaluation of
a solution. In this study, we used the Choquet inte-
gral to calculate an average value of the utilities, tak-
ing into account the interaction and the importance
of the criteria.
The set of criteria (gi) X ¼ {g1, g2,. . .gn} was eva-

luated with a set of utility functions (ui). The result
for a product P is Pu ¼ {u1, u2,. . .un}. Given l(X),
the overall evaluation index (GEI) of product A is
as follows:

TABLE V
Fuzzy interactions values

Fuzzy measure

l1 ¼ l2 ¼ l3 ¼ 0.5
l12 ¼ l21 ¼ 0.9
l13 ¼ l23 ¼ 0.6
l31 ¼ l32 ¼ 0.8
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GEI ¼ Clðu1; . . . ; unÞ ¼
Xn
i¼1

ðuðriÞ � uðri�1ÞÞlðAriÞ (59)

where Cl(u1,. . .,un) is the Choquet integral and r is
an index permutation 1,. . .,n. In fact it is a range (ui)
in an increasing order:

0 ¼ ur0 � ur1 � � � � � urn � 1 with ur1
¼ MinðiÞui and urn ¼ MaxðiÞui (60)

where Ari represents a set of criteria defined by Ari

¼ {gri,. . .,grn}.
This approach makes it possible to take into

account experimental observations and expert
know-how concerning the product itself and the
manufacturing process to determine and evaluate
interactions between variables. In this study, all of
the criteria were considered to have the same
importance and criteria f1 and f2 were considered to
have higher interactions (Table V).

Criterion f1, the maximization of the monomer
conversion, and criterion f2, the minimization of the
difference between Mw and Mwd, are common to
any type of latex. However, criterion f3, the maxi-
mization of wAMS incorporated in the copolymer,
was specific to this emulsion copolymerization
system. Therefore, any interaction with it was
important when f3 had the higher performance
(l31,l32). The operating conditions were ranked by
GEI, which allowed us to identify the most promi-
sing regions of the Pareto zone (Fig. 8).
The region of solutions marked by number 1 indi-

cates the preferred 20% of the solutions, those
marked by number 2 indicate the following 20%,
and those marked by number 5 correspond to the
worst 20%. Comparison of the experimental data in
Table III with the simulated ones in Figure 8 showed
that among the 12 experiments for parametric identi-
fication, 6 were in zone 1. This indicated that the
model was accurate within this zone and that this
zone was well defined. Interestingly, region 1 was
split into two zones. This implied that it could be
possible to carry out the copolymerization at a high
temperature and high wAMS to obtain a copolymer
with a high f3. wAMS in the resulting copolymer was
about 30%. Nevertheless, this high wAMS in the
copolymer was at the expense of a low conversion
(f1) and a large gap between the predicted Mw and
Mwd (f2). On the other hand, a low temperature and
low wAMS led to a high f1 and a low f2. wAMS in the
copolymer (f3) was low, too. These apparently
contradictory solutions may give equal satisfaction
or no satisfaction to a decision maker.

CONCLUSIONS

In this study, we aimed to develop a methodology
to deal with optimization problems and multicriteria
decisions for a batch emulsion copolymerization
process. This was based on modeling, optimization,
and decision-making tools to treat the entire set of
information about the copolymerization. In particu-
lar, the multicriteria decision problem could be
stated as follows: how could we define optimal
process conditions so that the resulting product
possessed a prescribed quality? The solution to it
was to optimize several criteria simultaneously, even
when some or all of them were conflicting. The
results show that the use of the Pareto front optimi-
zation was not always sufficient to select the optimal
operating conditions. The use of a decision aid sys-
tem based on fuzzy measures, in particular, the Cho-
quet integral, allowed us to identify the best solution
for the decision maker. Decision engineering

Figure 8 Ranking for 20% intervals of the (a) Pareto zone
and (b) Pareto front.
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provided valuable additional information for the
multicriteria optimization of the polymerization
processes.

NOMENCLATURE

Reaction rates

Rcm nucleation rate due to the presence of
AMS (kmol/s)

Rcp capture rate of free radicals by particles
RDS desorption rate of free radicals from

particles (kmol/s)
RPij rate of polymerization of monomer j with

free radicals terminated with monomer i
RTR overall transfer rate
RTRij transfer rate of monomer j with free

radicals terminated with monomer i

Kinetic constants

ddes1 desorption constant of the free radicals
terminated with an AMS unit

kcm nucleation constant
kD thermal decomposition constant of the

initiator in the aqueous phase (s�1)
f free-radical efficiency in the aqueous

phase
f0 free-radical efficiency in the pure STY

system
fi molar fraction of monomer i
kPij propagation rate constant
kTRij transfer rate constant of the monomer
n average number of free radicals per

particle

Product quantities

[A]0 initial concentration of the initiator
f0i initial molar fraction of monomer i in the

reactor
f1 molar fraction of AMS in the monomer

feed
F1 molar fraction of AMS in the copolymer
k1 average number of AMS units per free

radical
k2 average number of STY units per free

radical
k1 average number of AMS units per

polymer chain
k2 average number of STY units per

polymer chain
M0i initial concentration of monomer i
M0j initial concentration of monomer j
[M]0 initial concentration of the monomer
[Mi]P molar concentration of monomer i in the

particles
[Mj]P molar concentration of monomer j in the

particles

NP number of particles
P0 fraction of primary free radicals
P1 fraction of free radicals terminated with

an AMS unit
P2 fraction of free radicals terminated with

an STY unit
Pi fraction of free radicals terminated with

monomer i
R0 primary free radical (fraction P0)
Rw free radical concentration in the aqueous

phase
r12 reactivity ratio
R1 free radical terminated with an AMS

unit (fraction P1)
R2 free radical terminated with an STY unit

(fraction P2)
Rp overall propagation rate
[S]0 initial concentration of the surfactant
tf final time of polymerization
wAMS initial weight fraction of AMS
wP weight fraction of the polymer in the

particles
X overall conversion
Xi total mass conversion of monomer i
Xj total mass conversion of monomer j

Products properties

dP average particle diameter (m)
Ead, Eapij,
Eatrij

activation energy

l sum of l1 and l2
l1 second moment of the number of AMS

moieties
l2 second moment of the number of STY

moieties
Mn number-average molecular weight (kg/

kmol)
Mw weight-average molecular weight (kg/

kmol)
Mwd target weight-average molecular weight

(kg/kmol)
m covariance of the moments for the

number of monomer moieties
Nc number of polymer chains
/ volume fraction of monomer in the

particles
Scmc critical concentration of the surfactant
T polymerization temperature

Others

b initiator efficiency parameter
NA Avogadro’s number (the number of

molecules or particles in 1000 mol;
kmol�1)

R universal gas constant
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Volumes

VAQ volume of the aqueous phase (m3)
VD volume of the droplets (m3)
VP volume of the particles (m3)
VPOL volume of the polymer (m3)
VR engaged volume of the polymerizing

system in the reactor (m3)
VR0 initial volume of the polymerizing system

in the reactor (m3)

Physical constants

Mi molecular weight of monomer i (kg/kmol)
Mj molecular weight of monomer j (kg/

kmol)
qi density of monomer i (kg/m3)
qj density of monomer j (kg/m3)
qPi density of monomer i in the polymer

(kg/m3)

Multicriteria optimization

Ari set of criteria defined byAri¼ {gri,. . .,grn}
Cl(u1,. . .,un) Choquet integral
f1 objective function 1 (monomer conversion)
f2 objective function 2 (quality in terms of

average molecular weight)
f3 objective function 3 (AMS fraction incor-

porated in the copolymer)
GEI overall evaluation index
gi criterion i
l(X) fuzzy measure defined under X
r index permutation 1,. . .,n
ui utility of criterion i
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